كمتحان الوطني الموحد للبكالوريا المسالك الدولية – خيار فرنسية الدورة العادية 2019

HATHASH I NEVOSO +-C-U-@+ I 10XCE -I-E1O V SUCSTAL "MADE"

المادة

الشعبة أو المسلك

NS22F

المركز الوطني للتقويم والامتحانات والتوجيه

3 مدة الانجاز 7 المعامل

الرياضيات	4/	R
م الحياة والأرض ومسلك العلوم الفيزيائية - خيار فرنسية	سلك علو	9

INSTRUCTIONS GENERALES

L'utilisation de la calculatrice non programmable est autorisée ;

- Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- ✓ L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter.

COMPOSANTES DU SUJET

L'épreuve est composée de trois exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Géométrie dans l'espace	3 points
Exercice 2	Nombres complexes	3 points
Exercice 3	Calcul des probabilités	3 points
Problème	Etude d'une fonction numérique, calcul intégral et suites numériques	11 points

In désigne la fonction logarithme népérien

0.5

NS22F

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 - الموضوع - مادة: الرياضيات - مسلك علوم الحياة والأرض و مسلك العلوم الفيزيائية - خيار فرنسية

Exercice 1: (3 points)

Dans l'espace rapporté à un repère orthonormé direct $(O,\vec{i},\vec{j},\vec{k})$, on considère les points

$$A(1,-1,-1)$$
, $B(0,-2,1)$ et $C(1,-2,0)$

- **0.75** 1) a) Montrer que $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$
 - 0.5 b) En déduire que x + y + z + 1 = 0 est une équation cartésienne du plan (ABC)
 - 2) Soit (S) la sphère d'équation $x^2 + y^2 + z^2 4x + 2y 2z + 1 = 0$
- 0.75 | Montrer que le centre de la sphère (S) est $\Omega(2,-1,1)$ et que son rayon est $R=\sqrt{5}$
- 0.5 | 3) a) Calculer $d(\Omega,(ABC))$ la distance du point Ω au plan (ABC)
 - b) En déduire que le plan (ABC) coupe la sphère (S) selon un cercle (Γ) (la détermination du
 - centre et du rayon de (Γ) n'est pas demandée)

Exercice 2: (3 points)

- 0.75 | 1) Résoudre dans l'ensemble $\mathbb C$ des nombres complexes l'équation : $z^2-2z+4=0$
 - 2) Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A, B, C et D d'affixes respectives $a=1-i\sqrt{3}$, b=2+2i, $c=\sqrt{3}+i$ et $d=-2+2\sqrt{3}$
- **0.5** a) Vérifier que $a-d=-\sqrt{3}(c-d)$
- 0.25 b) En déduire que les points A , C et D sont alignés .
 - 3) On considère z l'affixe d'un point M et z' l'affixe de M' image de M par la rotation R de centre O et d'angle $\frac{-\pi}{3}$
- 0.5 Vérifier que $z' = \frac{1}{2}az$
 - 4) Soient H l'image du point B par la rotation R , h son affixe et P le point d'affixe p tel que p=a-c
- 0.5 a) Vérifier que h = ip
- 0.5 b) Montrer que le triangle $O\!H\!P$ est rectangle et isocèle en O

Exercice 3: (3 points)

Une urne contient dix boules : trois boules vertes , six boules rouges et une boule noire indiscernables au toucher . On tire au hasard et simultanément trois boules de l'urne .

On considère les événements suivants : A : « Obtenir trois boules vertes . »

B: « Obtenir trois boules de même couleur . »

C: « Obtenir au moins deux boules de même couleur . »

- 2 1) Montrer que $p(A) = \frac{1}{120}$ et $p(B) = \frac{7}{40}$
- 1 2) Calculer p(C).

0.25

0.5

0.5

0.5

1

1

0.5

Problème : (11 points)

Première partie :

Soit f la fonction numérique définie sur $]0,+\infty[$ par : $f(x)=x+\frac{1}{2}-\ln x+\frac{1}{2}(\ln x)^2$

et (C) sa courbe représentative dans un repère orthonormé $\left(O, \vec{i}, \vec{j}\right)$ (unité : 1 cm)

0.5 1) Calculer $\lim_{\substack{x \to 0 \\ x \to 0}} f(x)$ puis interpréter le résultat géométriquement

2) a) Vérifier que pour tout x de $\left[0,+\infty\right[$, $f(x)=x+\frac{1}{2}+\left(\frac{1}{2}\ln x-1\right)\ln x$

b) En déduire que $\lim_{x \to +\infty} f(x) = +\infty$

c) Montrer que pour tout x de $\left]0, +\infty\right[$, $\frac{(\ln x)^2}{x} = 4\left(\frac{\ln \sqrt{x}}{\sqrt{x}}\right)^2$ puis en déduire que $\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0$

d) Montrer que (C) admet au voisinage de $+\infty$ une branche parabolique de direction asymptotique la droite (Δ) d'équation y=x

3)a) Montrer que pour tout x de $\left[0,1\right]$: $(x-1)+\ln x \le 0$ et que pour tout x de $\left[1,+\infty\right[$: $(x-1)+\ln x \ge 0$

b) Montrer que pour tout x de $]0,+\infty[$, $f'(x)=\frac{x-1+\ln x}{x}$

0.5 c) Dresser le tableau de variations de la fonction f

0.5 4) a) Montrer que $f''(x) = \frac{2 - \ln x}{x^2}$ pour tout $x \text{ de }]0, +\infty[$

0.5 b) En déduire que (C) admet un point d'inflexion dont on déterminera les coordonnées .

0.5 S)a) Montrer que pour tout x de $\left]0,+\infty\right[$, $f(x)-x=\frac{1}{2}(\ln x-1)^2$ et déduire la position relative de (C) et (Δ)

b) Construire (Δ) et (C) dans le même repère $\left(O,\vec{i},\vec{j}\right)$

6)a) Montrer que la fonction $H: x \mapsto x \ln x - x$ est une primitive de la fonction $h: x \mapsto \ln x$ sur $]0, +\infty[$

0.75 b) A l'aide d'une intégration par parties , montrer que $\int_1^e (\ln x)^2 dx = e - 2$

c) Calculer en cm^2 l'aire du domaine plan limité par (C) et (Δ) et les droites d'équations x=1 et x=e

الصف 4 NS22F	الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 – الموضوع - مادة: الرياضيات – مسلك علوم الحياة والأرض و مسلك العلوم الفيزيانية – خيار فرنسية	
Deuxième	partie:	
	a suite numérique définie par : $u_0=1$ et $u_{n+1}=f(u_n)$ pour tout n de $$	IN
1	rer par récurrence que $1 \le u_n \le e$ pour tout n de IN	
	trer que la suite (u_n) est croissante .	
	duire que la suite (u_n) est convergente.	
.75 2) Calcul	trer que la suite (u_n) est croissante . Eduire que la suite (u_n) est convergente . En la limite de la suite (u_n) .	