Lycée moussa bno Noussaer-Khémisset

0,75

0,25

0,5

0,25

0,75

0,75

Devoir surveillé n°2 1er tranche: 2016/2017 1er Bac sc mat int

Prof:Abdellah Belkhatir

Durée: 2 heures

o Exercice n°1: (2pts)

On considère les ensembles : $E = \{2k - 1 / k \in \mathbb{Z}\}$

$$F = \left\{ \frac{2k-1}{5} / k \in \mathbb{Z} \right\} \text{ et } G = \left\{ \frac{4-\sqrt{k}}{4+\sqrt{k}} / k \in [0,+\infty[] \right\}$$

- 0,25 1)- a)- Montrer que: 8 ∉ F.
 - b)- Montrer que : E ⊂ F et que : F ⊄ E.
 - 2)- Montrer que: G =]-1,1].
 - o Exercice n°2: (4pts)
- 0,75 1)- Résoudre dans \mathbb{R} l'inéquation : (i): $-x^2 + x + 2 \ge 0$.

On considère l'application :
$$f: \begin{bmatrix} -1,2 \\ x \rightarrow \sqrt{-x^2 + x + 2} \end{bmatrix}$$

- 0,5 2)-a)- Montrer que: $(\forall x \in [-1, 2], f(1-x) = f(x)$.
 - b) L'application f est-elle injective? justifier votre réponse.
 - 3)-a)- Montrer que: $f([-1,2]) \subset [0,\frac{3}{2}]$.
 - b)- L'application fest-elle surjective? justifier votre réponse.
- 0,75 4)- Déterminer $f^{-1}(1,2]$).
 - 5)- Soit g la restriction de f à l'intervalle $\left[-1, \frac{1}{2}\right]$.
 - Montrer que g est bijective de $\left[-1,\frac{1}{2}\right]$ vers $\left[0,\frac{3}{2}\right]$ et déterminer
 - Sa bijection réciproque g^{-1} .

Exercice n°3: (4pts)

Soient f et g les fonctions numériques définies par :

$$f(x) = x^2 - \frac{2}{x} + 1$$
 et $g(x) = \sqrt{\frac{x}{x^3 + x - 2}}$

- 1)- a)- Montrer que f est strictement croissante sur $]1,+\infty[$ et [-1,O[
 - **b)** Montrer que f est strictement décroissante sur $]-\infty,-1]$.
 - 2)-a)- Montrer que : $D_g =]-\infty, O] \cup]1, +\infty[$.
- 0,5 b)- Montrer que: $(\forall \kappa \in]-\infty, O[\cup]1, +\infty[), \left(\frac{1}{g(\kappa)}\right)^2 = f(\kappa).$
 - c)- En déduire la monotonie de g sur $]-\infty,-1],[-1,0[$ et $]1,+\infty[$.

o Exercice nº4: (10pts)

Soit f la fonction numérique définie par : $f(x) = \frac{2x}{x^2 - x + 1}$

1)-a)- Montrer que: $D_f = \mathbb{R}$.

0,5

2

2

1,5

1

- b)- Montrer que: $(\forall x \in \mathbb{R}), \frac{-2}{3} \leq f(x) \leq 2$.
- c)- Montrer que f est strictement décroissante sur $]-\infty,-1]$ et $[1,+\infty[$. Et strictement croissante sur [-1,1].
- d) Dresser les tableaux de variations des fonctions suivantes:

$$F(x) = |f(-|x|)|$$
 et $G(x) = \frac{1}{f(x)}$.

2) - Soient g et h les fonctions définies par :

$$g(x) = \frac{1}{2-x}$$
 et $h(x) = \frac{x^2-x+1}{2\cdot(x+1)^2}$

- a)- Montrer que : $(\forall x \in \mathbb{R} \{1\}), h(x) = g \circ f(x)$.
- b)- En déduire la monotonie de n sur les intervalles suivants : $]-\infty,-1]$ et [-1,1[et $[1,+\infty[$.
- c)- Dresser le tableau de variations de h puis en déduire ses Extremums.
- > Exercices bonus.
- o Exercice n° 1. (3pts)
- ✓ Déterminentantes les fonctions f définies sur $D = \mathbb{R} \{-1, 1\}$ Et vérifiants $(\forall x \in D)$, $f\left(\frac{x-3}{x+1}\right) + f\left(\frac{3+x}{1-x}\right) = x$.
- o Exercice n°2: (2pts)
- Soif Eun ensemble non vide et $f: E \to E$ une application Telle Que: $(\forall x \in E)$, $f \circ f \circ f(x) = f(x)$.
 - \checkmark Montrer que: f est injective \Leftrightarrow f est surjective.
 - o Exercice n°3: (3pts)

On pose $D =]-1, +\infty[$ et soit $f : D \rightarrow D$ une fonction vérifiant : $(\forall (x,y) \in D^2), f(x + f(y) + x.f(y)) = y + f(x) + y.f(x)$

Et la fonction : $x \mapsto \frac{f(x)}{x}$ est strictement croissante sur chacun Des intervalles]-1,0[et $]0,+\infty[$.

✓ Montrer que: $(\forall x \in]-1, O[\cup]O, +\infty[), f(x) \neq x$ et en déduire Que f(O) = O et que: $(\forall x \in D), f(x) = \frac{-x}{x+1}$.